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Microstructure functions for random media with impenetrable particles

J. Quintanilla*

Department of Mathematics, University of North Texas, Denton, Texas 76203
~Received 13 May 1999!

We introduce a model consisting of nonaligned and impenetrable particles. This model is obtained by
placing particles of random orientation within ‘‘security spheres,’’ typically chosen to be spheres in thermal
equilibrium. The particles in general are allowed to be nonspherical. We obtain an analytical expression for the
functionSn , the probability thatn points simultaneously lie outside of the particle phase. This characterization
of the microstructure appears in certain rigorous bounds on the effective properties of random materials. We
also evaluateS2 for various specific examples of this model, including nonaligned impenetrable ellipsoids.
@S1063-651X~99!09811-6#

PACS number~s!: 81.05.Rm, 05.20.2y, 61.43.Gt, 61.20.Gy
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I. INTRODUCTION

Much progress has been made in recent years in cha
terizing the microstructure of statistically homogeneous tw
phase random media via a variety ofn-point correlation
functions @1–4#. This microstructural information is funda
mental in rigorously determining the effective transpo
electromagnetic and mechanical properties of ergodic t
phase random media@5–11#. One commonly used function
in this regard is then-point phase probability function
Sn(xn), which is the probability thatn points in configuration
xn[x1 , . . . ,xn all lie in one of the phases~say, phase 1!. We
may explicitly write this function as

Sn~xn!5K )
i 51

n

I ~xi !L ~1!

whereI (x) is the indicator function for phase 1. For partic
late models, phase 1 is typically defined to be the void ph
while phase 2 is defined to be the particle phase. This mi
structure function has been studied for totally impenetra
spheres@12,13#, allowing for evaluation of rigorous bound
on the effective properties@14,15#. These bounds have als
been numerically evaluated for various random media by
fast multipole method@11,16,17#. More recently, this analyti-
cal approach has been applied to the nonparticulate mod
level cuts of Gaussian random fields@18,19#.

Using spheres as particles makes possible the simpli
tion of certain complicated integrals in these bounds. Ho
ever, allowing the particles to be nonspherical introduce
significant extra level of complexity. If the positions of th
nonspherical particles are determined by a Poisson pro
~i.e., the particles are fully penetrable!, then this model may
be handled by the theoretical techniques for Boolean mo
@20#. Much less is known if the particles are not permitted
overlap; even mathematically defining such models is pr
lematic. The microstructure and effective properties of o
ented ellipsoids@21,22# have been studied through a tran
formation of a system of hard spheres by stretching
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compressing one of the coordinate axes. More recently,
simulation of nonaligned nonspherical particles through
complicated algorithm of random sequential addition h
been considered@23#.

The model of impenetrable particles considered in t
paper consists of particles witharbitrary fixed shape and
randomorientation. This model is generated by placing t
particles withinsecurity spheresof unit radius. We choose
the security spheres to be generated by a system in the
equilibrium. The particles are placed at random orientatio
which are independent of each other and of the location
the centers of the security spheres. A realization of t
model is shown in Fig. 1. In this figure, the security sphe
~in two dimensions, circles! have a volume fraction off2

s

FIG. 1. A two-dimensional system of impenetrable particles
arbitrary fixed shape and random orientation. The particles~filled!
are placed within impenetrable security spheres~outlined!, which
we choose to be generated by a system of hard spheres in the
equilibrium. The particles are then randomly oriented with the
curity spheres.
5788 © 1999 The American Physical Society
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PRE 60 5789MICROSTRUCTURE FUNCTIONS FOR RANDOM MEDIA . . .
50.35, and the particles are ellipses with semimajor axi
and semiminor axis 0.5. The volume fraction of the partic
is thusf250.175.

This model has one shortcoming: it does not permit
possible arrangements of totally impenetrable particles
the above example, requiring the centers of ellipses to
separated by at least the length of major axis is significa
more restrictive than simply requiring the ellipses to be n
overlapping. Nevertheless, we see from Fig. 1 that we m
obtain a nontrivial arrangement of nonaligned particles w
this model.

Requiring the particles to be randomly aligned within s
curity spheres introduces a certain probabilistic spher
symmetry in this model, permitting the evaluation of the m
crostructure functions. In Sec. II, we present a general
pression forSn for impenetrable particles within securit
spheres. We also simplify this general expression forS1 , S2,
andS3, discussing the efficient numerical evaluation ofS2 .
In Section III, we evaluateS2 for two examples of this
model: impenetrable spherical cores and randomly alig
ellipsoids.

II. ANALYTICAL EXPRESSION FOR Sn

For systems of impenetrable spheres of unit rad
Torquato and Stell@12# have evaluated then-point matrix
probability function as

Sn~xn!511(
s51

n
~21!s

s! E rs~xn11 , . . . ,xn1s!

3 )
j 5n11

n1s F12)
i 51

n

$12m~xi j !%Gdxn1 j . ~2!

This series truncates at thenth term because the particles a
not permitted to overlap. In this expression, the funct
rs(x

s) is the probability density function for findings par-
ticle centers with configurationxs . Also, the functionm is
the indicator function for one sphere; that is,

m~x!5H 1, uxu,1

0, uxu>1.
~3!

We will slightly abuse notation and write this function a
m(x) when the direction ofx is unimportant. Also, the points
xn11 , . . . ,xn1s may be considered as ‘‘test’’ particle center
and

xi j 5uxi2xj u. ~4!

In this paper, we are concerned not with impenetra
spheres but with particles within the spheres. Let particlej be
contained within the sphere with centerxj with some given
orientationv j . Then we have the following expression fo
Sn :
1
s

ll
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y
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Sn~xn;V!511(
s51

n
~21!s

s! E rs~xn11 , . . . ,xn1s!

3 )
j 5n11

n1s F12)
i 51

n

$12m~xi j ;v j !%Gdxn1 j ,

~5!

wherem( • ;v j ) is the indicator function for a particle with
orientationv j . The argumentV above represents all of th
given orientations of the particles. We assume that thev j are
independent and identically distributed, uniformly over
possible orientations. We also assume that thev j are inde-
pendent of the positions of the security spheres.

The above expression is only valid if the orientations
the particles are deterministically specified. If the partic
are instead randomly oriented within the spheres, we m
calculateSn by first taking theconditional expectation of
Sn(xn;V), conditioned on the orientations of the particle
Using the expectation of conditional expectations, we c
clude that

Sn~xn!5E@E$Sn~xn;V!uV%#. ~6!

Using ~5!, this simplifies to the final expression

Sn~xn!511(
s51

n
~21!s

s! E rs~xn11 , . . . ,xn1s!

3EF )
j 5n11

n1s S 12)
i 51

n

$12m~xi j ;v j !% D Gdxn1 j .

~7!

We now consider the simplification of this general expre
sion for S1 , S2, andS3 .

A. Evaluation of S1

To find the probability that one point lies outside of th
particles, we substituten51 into the general expression~7!.
We find that

S1~x1!512E r1~x2!E@m~x12;v2!#dx2512rV1 , ~8!

where V1 is the volume of a single particle andr is the
number density of the particles~and hence also the securit
spheres!. This result is expected: the volume fraction of th
security spheres is

f2
s5

4pr

3
, ~9!

and hence the volume fraction of the particles is

f25
f2

sV1

4p/3
5rV1 . ~10!

B. Simplification and evaluation of S2

For impenetrable spheres, Torquato and Stell@12# simpli-
fied the general series expansion~2! for S2 and S3 . We
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5790 PRE 60J. QUINTANILLA
follow their technique to simplifyS2 andS3 for the present
model of particles within security spheres. Ifn52, then~7!
simplifies as

S2~x1 ,x2!512rE ~12E@$12m~x13;v3!%

3$12m~x23;v3!%#!dx3

1
r2

2 E E g~r 34!„12E@$12m~x13;v3!%

3$12m~x23;v3!%#…„12E@$12m~x14;v4!%

3$12m~x24;v4!%#… dx3 dx4 , ~11!

wherer i j 5uxi j u andg(r )5r2(r )/r2 is the radial distribution
function for the particle centers. Because the particles are
permitted to overlap, many of the above terms vanish a
expanding, and we obtain our final expression forS2:

S2~x1 ,x2!512rV2~x12!

1r2E E m~x13!g~r 34!m~x42!dx3 dx4 . ~12!

In this expression,

m~x!5E@m~x;v!# ~13!

is the probability that a point a distancex from the center of
a security sphere is inside of a randomly oriented parti
Also,

V2~x12!5E F E m~x13;v3!1m~x23;v3!

2m~x13;v3!m~x23;v3!dx3G ~14!

is the expected union volume of twoalignedparticles, aver-
aged over all possible~common! orientationsv3 . This may
be rewritten as

V2~x12!5E $m~x13!1m~x23!2m2~x13,x23!%dx3 . ~15!

The function m may be interpreted as agray-scale
m-function within the security sphere. Likewise,

m2~x13,x23!5E@m~x13;v!m~x23;v!# ~16!

may be considered a gray-scale function for the intersec
of two aligned particles. This is in contrast to the abo
m-function ~3! which appears in the expansion ofSn for im-
penetrable spheres; this function deterministically assu
the values of 0 or 1, depending on whether a point is outs
or inside the sphere.

Assuming that the geometrical quantityV2 can be ob-
tained analytically, efficient numerical evaluation ofS2 rests
solely on the double integral in~12!. We do so by following
Torquato and Stell@12#. We define the three-dimension
Fourier transform by
ot
r

.

n

es
e

f̃ ~k!5E f ~r !e2 ik•r dr5
4p

k E
0

`

f ~r !r sin~kr !dr ~17!

if the function f is spherically symmetric. The inverse Fou
rier transform is then given by

f ~r !5
1

8p3E f̃ ~k!eik•r dr5
1

2p2r
E

0

`

f̃ ~k!k sin~kr !dk.

~18!

Following Torquato and Stell, we find that the double int
gral of ~12! is given by

E E m~x13!g~r 34!m~x42!dx3 dx45V1
21M ~r 12!,

~19!

whereV1 is the volume of one particle,

M ~r !5
1

2p2r
E

0

` c̃~k!

12r c̃~k!
m̃2~k!k sin~kr !dk ~20!

andc is the direct correlation function, obtained by solvin
the Ornstein-Zernike equation~Ref. @24#!.

The function m(r ) of course depends on the specifi
shape of the particles within the security spheres. We no
thatm(r ) is spherically symmetric since it is an average ov
all possible orientations of the particles; therefore,m̃(k) is
also spherically symmetric.

The direct correlation function has been solved exactly
a system of hard~in our case, security! spheres exactly in the
Percus-Yevick approximation; see@24# for details. We find
that the Fourier transform of this direct correlation functi
is

c̃~k!52
4p

k3 H l1@sin~2k!22k cos~2k!#

1
3hl2

k
@4k sin~2k!1~224k2! cos~2k!22#

1
hl1

2k3
@~22k416k223!cos~2k!

1~4k326k!sin~2k!13#J , ~21!

where

l15
~112h!2

~12h!4
, ~22!

l252
~11h/2!2

~12h!4
, ~23!

andh54pr/3 is the reduced density of the security spher
The integral~20! must then be numerically evaluated

finally obtain S2 from ~12! and ~19!. This was done by
Torquato and Stell for systems of hard spheres in equi
rium, for which m(r )5m(r ). However, this is somewha
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PRE 60 5791MICROSTRUCTURE FUNCTIONS FOR RANDOM MEDIA . . .
problematic for the current model of particles within secur
spheres, since in generalm(r ) @and hencem̃(k)# may be
either difficult or impossible to obtain analytically. Ther
fore, instead of using direct numerical integration to evalu
~20!, we instead use aone-dimensionalfast Fourier sine
transform@25#. The functionm̃(k) may be obtained from the
Fourier sine transform ofrm(r ) by this method, as well as
M (r ) from kM̃(k).

In summary, for our model of impenetrable particles
random alignment within security spheres, the microstruct
function S2(r ) may be obtained from~12!. The quantity
V2(r ) is essentially a geometric function, while the doub
integral~19! may be numerically evaluated using the Four
transform ofm(r ) and the solution of the Ornstein-Zernik
equation under the Percus-Yevick approximation.

C. Simplification of S3

We now consider the simplification of~7! for n53. Once
again, we follow the method of Torquato and Stell@12# and
find that

S3~x1 ,x2 ,x3!512rV3~x1 ,x2 ,x3!1r2@X~1,2!1X~1,3!

1X~2,3!#2r2@Y~1;2,3!1Y~2;1,3!

1Y~3;1,2!#2r3Z~1,2,3!. ~24!

This formula is obtained after eliminating all terms whic
integrate to zero because of the impenetrability of the se
rity spheres. In this formula,V3(x1 ,x2 ,x3) is the expected
union volume of three aligned particles with centers atx1 , x2
and x3, averaged over all possible~common! orientations.
Also, the termsX, Y andZ are given by

X~ i , j !5E E m~xi4!g~r 45!m~xj 5!dx4 dx5 , ~25!

Y~ i ; j ,k!5E E m~xi4!m2~xj 5 ,xk5!g~r 45!dx4 dx5 , ~26!

and

Z~ i , j ,k!5E E E m~xi4!m~xj 5!m~xk6!

3g3~x4 ,x5 ,x6!dx4 dx5 dx6 , ~27!

where

g3~x4 ,x5 ,x6!5r~x4 ,x5 ,x6!/r3. ~28!

III. EVALUATION OF S2 FOR SPHERICAL CORES
AND ELLIPSOIDS

In the previous section, we developed a general analyt
expression forSn for our model of impenetrable and ran
domly aligned particles within security spheres. We th
simplified this expression forS1 , S2, andS3 . In this section,
we consider the explicit numerical evaluation ofS2 for two
e

f
re

r

u-

al

n

different examples of this model: spherical cores and r
domly aligned ellipsoids.

A. Spherical cores

The first specific model is really a deterministic mod
we take the particles to be the cores of radiusl,1 within the
security spheres. To illustrate this idea, a two-dimensio
realization of this model withf250.175 andl51/A2 ~so
thatf2

s50.35) is shown in Fig. 2. This is not a simple mod
of impenetrable disks, since there is apositiveminimal dis-
tance between the surfaces of two particles. For compari
a system of disks in equilibrium withf250.175 is shown in
Fig. 3. In this figure, we see there are several particles wh
are almost touching.

For the model of three-dimensional spherical cores,
orientation of the cores is insignificant, and so the functionm
is given by

m~r !5H 1, r ,l,

0, r>l.
~29!

The Fourier transformm̃(k) may be analytically derived as

m̃~k!5
4p

k3
@sin~lk!2lk cos~lk!#. ~30!

Therefore, the double integral~19! may be obtained by eithe
Fourier sine transforms, as above, or by direct numer
integration by using~21! and~30!. We have used both meth
ods as a check of our computer implementations, and we
that the two evaluations ofS2 are essentially the same.

FIG. 2. A system of impenetrable disks withf250.175. These
particles are the cores of radiusl51/A2 of a system of security
spheres in equilibrium with volume fractionf2

s50.35. There is a
positive minimal distance between the surfaces of any two partic
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5792 PRE 60J. QUINTANILLA
In Fig. 4, we show the graphs ofS2(u) for three systems
of impenetrable cores. We show the dimensionless dista
u5r /l, normalized by the radius of the coresl. We choose
l to have the values 0.75, 0.85, and 1.~Of course,l51
corresponds to ordinary impenetrable spheres.! To ensure
that the volume fraction of the core phase isf250.2 for
eachl, the volume fraction of the security spheres is chos
to be

f2
s5f2 /l3. ~31!

FIG. 3. A system of impenetrable disks in equilibrium wi
f250.175.

FIG. 4. The graphs ofS2(u) for three systems of impenetrab
cores. The volume fraction of the core phase isf250.2, while the
core radiusl is chosen to be 0.75, 0.85, and 1. We see that
general shape of the function is the same for these different va
of l, but decreasing the size of the core heightens the crests
deepens the troughs. The circles are simulation data.
ce

n

Of course, sincef2
s,1 ~not to mention the random clos

packing limit!, the possible values ofl for a givenf2 are
constrained. The small circles are obtained from measu
S2 from the cores of 1000 security spheres; the locations
the security spheres are determined by a molecular dyna
computer simulation. We see that the analytical and num
cal calculations are in excellent agreement with simulatio
We also see that the general shape of the graph ofS2 is
unchanged by the choice ofl; however, smaller cores accen
tuate the crests and troughs.

B. Randomly oriented oblate ellipsoids

We now consider particles which are oblate spheroids
this model, the orientation of the individual particles is

FIG. 5. The graphs ofS2(r ) for three systems of nonaligne
ellipsoids. The volume fraction of the ellipsoids isf250.15, while
the common semiminor axes are chosen to have lengthsb50.70,
0.80, 0.90, and 1. Naturally,b51 corresponds to a system of im
penetrable spheres. The distancer is measured in terms of the ra
dius of the security spheres. We see that the first trough occurs
smallerr as the ellipsoids become thinner and thinner. The circ
are simulation data.

FIG. 6. As in Fig. 5, except withf250.3 andb50.80, 0.90,
and 1.

e
es
nd



i-
ua

c
s
lu
1
e
e

o
ta-

ng
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nontrivial complication~unlike the previous model of spher
cal cores.! The base particle has surface given by the eq
tion

x21
y2

b2
1

z2

b2
51, b<1, ~32!

so that the semimajor axis is equal to the radius of the se
rity spheres. These ellipsoids share the same center a
security spheres but may be oriented at any angle. An il
tration of this model in two dimensions was given in Fig.

A simple calculation shows that the intersection volum
of two alignedoblate ellipsoids, obtained by translating th
center of the base ellipsoid tox1 andx2, is given by

V2
int~x1 ,x2!5H 4p

3
b2S 12

3r 2

4
1

r 2
3

16D , r 2,2,

0, r 2>2

~33!

where

r 25S x0
21

y0
2

b2
1

z0
2

b2D 1/2

~34!

andx22x15(x0 ,y0 ,z0).
To obtainV2(r ), we use the relation
c-
i

e
lu
-

u-
the
s-
.

V2~r !52V12V 2
int~r !5

8pab2

3
2V 2

int~r !, ~35!

where V 2
int(r ) is the expected intersection volume of tw

aligned oblate ellipsoids, averaged over all possible orien
tions of the two particles. This is equivalent to averagi
~33! over all vectors (x0 ,y0 ,z0) with lengthr. After convert-
ing to spherical coordinates, we find that

V 2
int~r !5

1

4pE2p

p E
0

2p

V2
int~u,f!sin f du df, ~36!

where

V2
int~u,f!5H 4p

3
b2S 12

3r 2

4
1

r 2
3

16D , r 2,2,

0, r 2>2,

~37!

and ~34! simplifies to

r 25
r

b
~12@12b2#cos2 f!1/2. ~38!

After integrating, we finally obtain
V 2
int~r !5

¦

4pb2

3 F11
r ~3r 212b2r 2248b2!

128b2
2

3r ~16b22r 2!arcsin~A12b2!

128b3A12b2 G , 0<r<2b,

12
3r

8
1

r 3

64
1

3r 3

128b2
23S r 218b2

64b2 DA r 224b2

r 2~12b2!

1

3r ~r 2216b2!Farcsin~A12b2!2arcsinSA12
r 2

4b2D G
128b3A12b2

, 2b<r<2,

0, r .2.

~39!
s of
s
llip-
by

la-
d

To calculateS2(r ) for this model using~12!, we also need
the functionm(r ). Unlike the two examples above, this fun
tion is no longer deterministic since the particles are perm
ted to have different orientations within the security spher
Since the ellipsoids are oblate, it is a straightforward calcu
exercise to show that

m~r !55
1, 0<r<b,

12
1

r
Ar 22b2

12b2
, b<r<1,

0, r>1.

~40!
t-
s.
s

The functions~35!, ~39!, and ~40! are then substituted into
~12! and ~19! to numerically evaluateS2 .

In Figs. 5 and 6, we show the graphs ofS2(r ) for systems
of impenetrable ellipsoids withf250.15 andf250.3, re-
spectively. The dimensionless distancer is proportional to
the radius of the security spheres. Also, a range of value
b are chosen; of course, settingb51 changes the ellipsoid
into spheres. For a system of impenetrable nonaligned e
soids, the volume fraction of the security spheres is given

f2
s5f2 /b2. ~41!

The small circles again are obtained from computer simu
tions by measuringS2 for systems of 1000 randomly aligne
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ellipsoids within security spheres. We see that the theore
predictions are in excellent agreement with computer sim
lations. For small values ofb, the peaks and troughs ar
accentuated and are shifted to somewhat smaller dimens
less distances. This shift makes intuitive sense: the len
scale of the particles~and henceS2) decreases withb.

IV. CONCLUSIONS

We have introduced a model of random media consis
of particles, placed within security spheres, with arbitra
fixed shape and random orientation. We have develope
er
al
-

n-
th

g

a

general expression forSn for this model and have simplified
this expression forS1 , S2, andS3 . Finally, we have numeri-
cally evaluatedS2 for spherical cores and randomly aligne
ellipsoids. We have observed that the composition of
material is reflected in the graph ofS2 .
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