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Microstructure functions for random media with impenetrable particles

J. Quintanill§
Department of Mathematics, University of North Texas, Denton, Texas 76203
(Received 13 May 1999

We introduce a model consisting of nonaligned and impenetrable particles. This model is obtained by
placing particles of random orientation within “security spheres,” typically chosen to be spheres in thermal
equilibrium. The particles in general are allowed to be nonspherical. We obtain an analytical expression for the
functionS,, the probability thath points simultaneously lie outside of the particle phase. This characterization
of the microstructure appears in certain rigorous bounds on the effective properties of random materials. We
also evaluateS, for various specific examples of this model, including nonaligned impenetrable ellipsoids.
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[. INTRODUCTION compressing one of the coordinate axes. More recently, the
simulation of nonaligned nonspherical particles through a
Much progress has been made in recent years in characemplicated algorithm of random sequential addition has
terizing the microstructure of statistically homogeneous two-been consideref23].
phase random media via a variety pfpoint correlation The model of impenetrable particles considered in this
functions[1-4]. This microstructural information is funda- paper consists of particles withrbitrary fixed shape and
mental in rigorously determining the effective transport,randomorientation. This model is generated by placing the
electromagnetic and mechanical properties of ergodic twoparticles withinsecurity spheresf unit radius. We choose
phase random medi®—11]. One commonly used function the security spheres to be generated by a system in thermal
in this regard is then-point phase probability function equilibrium. The particles are placed at random orientations
S,(x"), which is the probability tham points in configuration  which are independent of each other and of the locations of

X"=X, ... X, all lie in one of the phasesay, phase)lWe the centers of the security spheres. A realization of this
may explicitly write this function as model is shown in Fig. 1. In this figure, the security spheres
. (in two dimensions, circlgshave a volume fraction of3
Xp) = I (X 1
Sn(Xn) <ﬂl <.>> (D) “We ” "%
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wherel (x) is the indicator function for phase 1. For particu- @0 ® @® =~ 0
late models, phase 1 is typically defined to be the void phase ® @@© ) ® LY
while phase 2 is defined to be the particle phase. This micro- ® e
@

L)
0@
i i i ® @)
structure function has been studied for totally impenetrable @@©§%© & @8 o o ® 7 -

sphereq12,13, allowing for evaluation of rigorous bounds

on the effective propertiel4,15. These bounds have also %@@ g @@§ & ©@®@@@@ @%

been numerically evaluated for various random media by the| @@

. . ‘ e
fast multipole methodl11,16,17. More recently, this analyti- o ®
cal approach has been applied to the nonparticulate model o @@ L ®@ ® ©%© ©®@ ® é.gg
level cuts of Gaussian random fielk3,19. @@®@ % @% ©@ ®

Using spheres as particles makes possible the simplifica# \Y @@© ® ) @@@@

tion of certain complicated integrals in these bounds. How- | @ @ QQQ% Y 7 () @@@S@ 8
ever, allowing the particles to be nonspherical introduces a| @ ) @@@ ® @@% @
significant extra level of complexity. If the positions of the 8 ® ) @@@ XK
nonspherical particles are determined by a Poisson procesﬁ @® @ @ ~) @ ©@ ) ®
(i.e., the particles are fully penetrahl¢hen this model may ) ® ©@ @@@@GQ ® ©@§>

[20]. Much less is known if the particles are not permitted to
overlap; even mathematically defining such models is prob-

lematic. The microstructure and effective properties of ori- £ 1. A two-dimensional system of impenetrable particles of
ented ellipsoid§21,22 have been studied through a trans- arpjtrary fixed shape and random orientation. The partigfited)
formation of a system of hard spheres by stretching Olyre placed within impenetrable security sphefestlined, which
we choose to be generated by a system of hard spheres in thermal
equilibrium. The particles are then randomly oriented with the se-
*Electronic address: johng@unt.edu curity spheres.

be handled by the theoretical techniques for Boolean modelg
e
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=0.35, and the particles are ellipses with semimajor axis 1 " (—1)s
and semiminor axis 0.5. The volume fraction of the particles S,(x";Q)=1+ Z —'f Ps(Xns+1s - -+ Xnts)
is thus ¢,=0.175. =1 S
This model has one shortcoming: it does not permit all n+s n
possible arrangements of totally impenetrable particles. In x 11 11-11 {1—m(x;j;@))} |dXns
the above example, requiring the centers of ellipses to be j=n+1 i=1
separated by at least the length of major axis is significantly (5)

more restrictive than simply requiring the ellipses to be non-
overlapping. Nevertheless, we see from Fig. 1 that we mawherem( - ;w;) is the indicator function for a particle with
obtain a nontrivial arrangement of nonaligned particles withorientationw; . The argumenf) above represents all of the
this model. given orientations of the particles. We assume thauthare
Requiring the particles to be randomly aligned within se-independent and identically distributed, uniformly over all
curity spheres introduces a certain probabilistic sphericapossible orientations. We also assume thatdhere inde-
symmetry in this model, permitting the evaluation of the mi- pendent of the positions of the security spheres.
crostructure functions. In Sec. Il, we present a general ex- The above expression is only valid if the orientations of
pression forS, for impenetrable particles within security the particles are deterministically specified. If the particles
spheres. We also simplify this general expressiorsiarS,,  are instead randomly oriented within the spheres, we may
andS,, discussing the efficient numerical evaluationSf.  calculateS, by first taking theconditional expectation of
In Section Ill, we evaluates, for two examples of this S (x";Q), conditioned on the orientations of the particles.
model: impenetrable spherical cores and randomly aligne@sing the expectation of conditional expectations, we con-
ellipsoids. clude that

Sa(X") =E[E{Sy(x"; )| Q}]. ©)

Using (5), this simplifies to the final expression
For systems of impenetrable spheres of unit radius,

II. ANALYTICAL EXPRESSION FOR S,

Torquato and Stel[12] have evaluated tha-point matrix N t(—-1)8
probability function as Sn(x ):1+;1 o | Ps(Xne1s s Xoss)
n+s n
n
-1)® XE 1- 1-m(X;i ; @ dXpy i -
SixM=1+ 2, %f Ps(Xns1y -+ Xnts) 1—111< 1 a=mox, w’)}) "
s=1 .
)
n+s n
x 1 {1—1—[ {1-m(x)} |dx,+;. (20  We now consider the simplification of this general expres-
j=n+1 =1 sion forS,;, S,, andS;.

This series truncates at theh term because the particles are A. Evaluation of S,

not permitted to overlap. In this expression, the function To find the probability that one point lies outside of the
ps(x®) is the probability density function for finding par-  particles, we substitute=1 into the general expressig¢n).
ticle centers with configuratior®. Also, the functionmis  We find that

the indicator function for one sphere; that is,

51(X1):1_f p1(X2) E[M(X12; w5) JdX,=1—pV4, (8)
1, |x|<1

mx)= 0, |x|=1.

(3 whereV; is the volume of a single particle andis the
number density of the particldéand hence also the security

spheres This result is expected: the volume fraction of the

We will slightly abuse notation and write this function as Security spheres is
m(x) when the direction ok is unimportant. Also, the points

Xnt1s - - - Xn+s May be considered as “test” particle centers, d3=—— (9)
and 2 37

and hence the volume fraction of the particles is

$3V1
2= gz~ PV

Xij = X = x| 4
(10
In this paper, we are concerned not with impenetrable
spheres but with particles within the spheres. Let parjible
contained within the sphere with centgrwith some given

orientationw; . Then we have the following expression for  For impenetrable spheres, Torquato and $fel] simpli-
S fied the general series expansi@®) for S, and S;. We

B. Simplification and evaluation of S,
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follow their technique to simplifyS, and S; for the present - e A (= _
model of particles within security spheres.nlf2, then(7) f(k)ZJ f(re™™"dr= TJ’ f(r)r sinkr)dr (17)
simplifies as 0
if the functionf is spherically symmetric. The inverse Fou-
SZ(Xl,XZ)Zl—pJ (1-E[{1—m(x13; w3)} rier transform is then given by
_ . 1 (.~ . 1 (=
X{1—m(X,3;w3)}])dxs f(r)= —f f(k)ek rdr= —f f(k)k sin(kr)dk.
P2 8773 2772I' 0
+ 7] f 9(rzs) (L—E[{1—m(xy3; w3)} (18)

Following Torquato and Stell, we find that the double inte-
X{1=m(Xz3; @3) ) (L= E[{1—M(Xy4; @4)} gral of (12) is given by

X{1=m(Xp4;w4)}]) dX3 dXy, (1D
J' fﬂ(xls)g(r34)ﬂ(x42)dxa dx4=V§+M(r12),

wherer; =|x;| andg(r) = p?(r)/p? is the radial distribution (19
function for the particle centers. Because the particles are not
permitted to overlap, many of the above terms vanish aftejvhereV, is the volume of one particle,

expanding, and we obtain our final expression $er

Sa(X1,%2) = 1= pVa(X12) M(r)=

! F ok #2(k)k sin(kr)dk  (20)
= sin(kr
27%r Jo 1—pc(k)'u
+p2J J 1(X13)9(r32) (Xa0)dX5 dX4. (12) andc is the direct correlation function, obtained by solving
the Ornstein-Zernike equatidiRef. [24]).
In this expression The function w(r) of course depends on the specific
' shape of the particles within the security spheres. We notice
w(X)=E[m(X; )] (13 that u(r) is spherically symmetric since it is an average over
all possible orientations of the particles; therefougk) is
is the probability that a point a distangdrom the center of also sph_erically symr_netric. _
a security sphere is inside of a randomly oriented particle. The direct correlation function has been solved exactly for
Also, a system of hardin our case, securifyspheres exactly in the
Percus-Yevick approximation; s¢24] for details. We find

that the Fourier transform of this direct correlation function
Vo(X12)=E f M(X13; w3) +M(Xp3; w3) is
~ 41 )
—M(X13; 03)M(Xp3; w3)dX3 (14 c(k)=-— Fl N[ Sin(2k) — 2k cog2K)]
is the expected union volume of tvasigned particles, aver- 37\, . 5
aged over all possiblecommon orientationsws . This may + L4k sin(2k) + (2 4k%) cog2k)—2]

be rewritten as

+ n—M[(—2k4+6k2—3)cos(2k)
VZ(XlZ):J {1 (X13) + u(X23) = pa(X13,Xo3) AX3. (15 2k3
The function w may be interpreted as aray-scale + (4k3— 6k)sin(2k)+3]] , (21
m-function within the security sphere. Likewise,
H2(X13,X23) = E[M(X13; @) M(X23; 0) ] (16) where

. _ _ _ (1+27)2
may be considered a gray-scale function for the intersection A=, (22)
of two aligned particles. This is in contrast to the above (1-n)*
m-function (3) which appears in the expansion $f for im- )
penetrable spheres; this function deterministically assumes N (1+7/2) 23
the values of 0 or 1, depending on whether a point is outside 2 (1—p)* '

or inside the sphere.

Assuming that the geometrical quanti¥yy can be ob- and»=4mp/3 is the reduced density of the security spheres.
tained analytically, efficient numerical evaluation®f rests The integral(20) must then be numerically evaluated to
solely on the double integral if12). We do so by following finally obtain S, from (12) and (19). This was done by
Torquato and Stel[12]. We define the three-dimensional Torquato and Stell for systems of hard spheres in equilib-
Fourier transform by rium, for which u(r)=m(r). However, this is somewhat
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problematic for the current model of particles within security
spheres, since in genergl(r) [and hencew(k)] may be
either difficult or impossible to obtain analytically. There-
fore, instead of using direct numerical integration to evaluat
(20), we instead use @ne-dimensionafast Fourier sine

transform[25]. The functionz (k) may be obtained from the
Fourier sine transform of u(r) by this method, as well as
M(r) from kM(K).

In summary, for our model of impenetrable particles of

random alignment within security spheres, the microstructurg

function S,(r) may be obtained from{12). The quantity
V,(r) is essentially a geometric function, while the double
integral(19) may be numerically evaluated using the Fourier
transform ofw(r) and the solution of the Ornstein-Zernike
equation under the Percus-Yevick approximation.

C. Simplification of S

We now consider the simplification ¢7) for n=3. Once
again, we follow the method of Torquato and Sfél?] and
find that

Sa(X1,X2,X3) = 1= pVs(Xq, Xz, X3) + p?[ X(1,2) + X(1,3)

+X(2,39]-p[Y(1;23+Y(2;1,3
+Y(3;1,2]1-p°Z(1,2,3). (24)

This formula is obtained after eliminating all terms which

MICROSTRUCTURE FUNCTIONS FOR RANDOM MEDIA . ..

FIG. 2. A system of impenetrable disks wighp=0.175. These
particles are the cores of radius=1/\2 of a system of security
spheres in equilibrium with volume fraction3=0.35. There is a
positive minimal distance between the surfaces of any two particles.

different examples of this model: spherical cores and ran-
domly aligned ellipsoids.

integrate to zero because of the impenetrability of the secu-

rity spheres. In this formula)z(x4,X,,X3) is the expected
union volume of three aligned particles with centerg;atx,
and x5, averaged over all possiblgommon orientations.
Also, the termsX, Y andZ are given by

X(i,])= f J L(Xi)0(r 9 u(xjs)dxg dxg, (25

Y(i;j-k):J j M (Xia) t2(Xj5,Xk5) 9(T 45)dX4 dXs, (26)
and
200= | | [ oamtgente
X g3(X4,X5,Xe)dX4 dXs5 dXg, 27
where
03(X4,Xs5,X6) = p(X4,X5,X6)/ p°. (28)

Ill. EVALUATION OF S, FOR SPHERICAL CORES
AND ELLIPSOIDS

A. Spherical cores

The first specific model is really a deterministic model:
we take the particles to be the cores of radissl within the
security spheres. To illustrate this idea, a two-dimensional
realization of this model withp,=0.175 and\ =1/y/2 (so
that ¢5=0.35) is shown in Fig. 2. This is not a simple model
of impenetrable disks, since there igpasitiveminimal dis-
tance between the surfaces of two particles. For comparison,
a system of disks in equilibrium witth,=0.175 is shown in
Fig. 3. In this figure, we see there are several particles which
are almost touching.

For the model of three-dimensional spherical cores, the
orientation of the cores is insignificant, and so the funcgion
is given by

11
0,

r<na,

r=N\. @9

u(r)=

The Fourier transformu(k) may be analytically derived as

~ 4
,u,(k):F[sin()\k)—)\k cog k) ]. (30

In the previous section, we developed a general analyticalherefore, the double integrél9) may be obtained by either

expression forS, for our model of impenetrable and ran-

Fourier sine transforms, as above, or by direct numerical

domly aligned particles within security spheres. We thenintegration by using21) and(30). We have used both meth-

simplified this expression fd8;, S,, andS;. In this section,
we consider the explicit numerical evaluation $f for two

ods as a check of our computer implementations, and we find
that the two evaluations &, are essentially the same.
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FIG. 5. The graphs of,(r) for three systems of nonaligned
ellipsoids. The volume fraction of the ellipsoidsds=0.15, while
the common semiminor axes are chosen to have leryth3.70,

0.80, 0.90, and 1. Naturalljg=1 corresponds to a system of im-
penetrable spheres. The distamcis measured in terms of the ra-
FIG. 3. A system of impenetrable disks in equilibrium with dius of the security spheres. We see that the first trough occurs for

¢,=0.175. smallerr as the ellipsoids become thinner and thinner. The circles
are simulation data.

In Fig. 4, we show the graphs &(u) for three systems . s :
of impenetrable cores. We show the dimensionless distanc(gf course, _5|nce¢$2<1 _(not to mention the r_andom close
u=r/\, normalized by the radius of the coresWe choose packmg_ limig, the pOSS'b!e values of fo_r a giveng, are
N héve the values 0.75, 0.85, and (Df course, \=1 constrained. The small circles are obtained from measuring
corresponds to ordinary in%penetlrable spherés énsure S, from the cores of 1000 secu_rity spheres; the locations Qf
that the volume fraction of the core phaseds=0.2 for the security spheres are determined by a molecular dynamics
each\, the volume fraction of the security spheres is choserfomputer s!mulat|on_. We see that the analyt|c_al a_nd aumeri-
to be cal calculations are in excellent agreement with simulations.
We also see that the general shape of the grapB,ois
unchanged by the choice &f however, smaller cores accen-

s 3 tuate the crests and troughs.
2= b2 I\ (31
B. Randomly oriented oblate ellipsoids
0.80 T T T . . . .
We now consider particles which are oblate spheroids. In
TR this model, the orientation of the individual particles is a
----A=0.385
0.75 ——-A=1.00 R 0.7 T
—— b=08
----b=09
= \ ——-b=10
3 070 | 3 . N
%)) 0
\ !
N oy
> 0.6 \}x i
W W
0.65 - N . 51 X
AN s A
‘\:’\N—f(j} \;\
s \\,\
?\\
0.60 L L L \o\\
0.0 1.0 2.0 3.0 4.0 o ,
. . ) 0.5 e T g o
Dimensionless distance, u=r/A \Z\\’ et T tome
S e e
FIG. 4. The graphs 08,(u) for three systems of impenetrable
cores. The volume fraction of the core phasebjs=0.2, while the 0.0 1‘0 2‘0 3.0 2.0
core radius\ is chosen to_be 0.75, 0.85, and 1. We see that the Dimensionless distance, r
general shape of the function is the same for these different values

of A, but decreasing the size of the core heightens the crests and FIG. 6. As in Fig. 5, except with$,=0.3 andb=0.80, 0.90,
deepens the troughs. The circles are simulation data. and 1.
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nontrivial complicationunlike the previous model of spheri- - 8mrab? -
cal cores. The base particle has surface given by the equa- Vo(r)=2V, = V3 (r)= 3 =V5(r), (35
tion

where V''(r) is the expected intersection volume of two
20, Y T aligned oblate ellipsoids, averaged over all possible orienta-
Xt szr bz_l’ b=1, (32 tions of the two particles. This is equivalent to averaging
(33) over all vectors Xq,Yq,2) With lengthr. After convert-

so that the semimajor axis is equal to the radius of the secung to spherical coordinates, we find that

rity spheres. These ellipsoids share the same center as the

security spheres but may be oriented at any angle. An illus- 1 (= (2m

tration of this model in two dimensions was given in Fig. 1. Vint(r)= _J' f VM9, ¢)sin ¢ do dp,  (36)

A simple calculation shows that the intersection volume dm)-zJo
of two aligned oblate ellipsoids, obtained by translating the

center of the base ellipsoid tq andXx,, is given by where
47sz(l 32, "2 r,<2 4w o 31, 13
i q BV EEETIE 2 ' I __c4 <
V|2nt(X1,X2)= 3 4 16 (33 Viznt(0'¢): 3 ( 2 + 16/ r,<<2, 37)
0, r,=2 0, r,=2,
where S
and (34) simplifies to
2 22 1/2
r2=(x§+y—2+—2 (34) r
bs b r2=5(1—[1—bz]cos.2 )2 (38)
andX2_X1=(X0,yo,Zo).
To obtainV,(r), we use the relation After integrating, we finally obtain
41b? r(3r2+2b%r?—480%) 3r(16b%>—r?)arcsin\1—b?)
+ — , 0sr=<2b,
3 1282 12&°\1-b?
L 3rJr r3Jr 3rd 3 r’+8b%| [ r2—4p?
- 8 64 1282 64b? r2(1-b?)
Vo ()= 5 (39
r
3r(r2—16b?) arcsir(\/l—bz)—arcsir( 1- E)
+ , 2bsr=<2,
128°%/1-b?
0, r>2.

To calculateS,(r) for this model usind12), we also need The functions(35), (39), and (40) are then substituted into
the functionw(r). Unlike the two examples above, this func- (12) and(19) to numerically evaluats, .
tion is no longer deterministic since the particles are permit- In Figs. 5 and 6, we show the graphsS{r) for systems
ted to have different orientations within the security spheresof impenetrable ellipsoids witl$,=0.15 and¢,=0.3, re-

Since the ellipsoids are oblate, it is a straightforward calculu$pectively. The dimensionless distances proportional to
exercise to show that the radius of the security spheres. Also, a range of values of

b are chosen; of course, settibg=1 changes the ellipsoids
into spheres. For a system of impenetrable nonaligned ellip-
soids, the volume fraction of the security spheres is given by

1, O=r=b,
1 [r?—p? b3= ¢, /b2 (41)
/.L(I'): 1_F m, b=sr<1, (40)

The small circles again are obtained from computer simula-
0, r=1. tions by measuring, for systems of 1000 randomly aligned
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ellipsoids within security spheres. We see that the theoreticajeneral expression f@, for this model and have simplified
predictions are in excellent agreement with computer simuthis expression fo8,;, S,, andS;. Finally, we have numeri-
lations. For small values o, the peaks and troughs are cally evaluatedS, for spherical cores and randomly aligned
accentuated and are shifted to somewhat smaller dimensiosHlipsoids. We have observed that the composition of the
less distances. This shift makes intuitive sense: the lengthaterial is reflected in the graph 6§ .

scale of the particletand henceS,) decreases with.
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